
Python API
Online version: https://wiki.advacam.cz/wiki/Python_API

https://wiki.advacam.cz/wiki/Python_API

2

Contents

Overview 3 ..
Introductory examples 3 ..

Requirements 5 ..
Project and auxilliary files examples 7 ...
Auxilliary files details 7 ...

Basic troubleshooting 8 ..
Typical complications 8 ..
API version changes 10 ..

First steps 10 ..
Mini test 10 ..
Enhanced test 11 ..
We know what we are measuring 11 ...
Is the device connected? 12 ..
List of the devices 13 ...

Examples 14 ..
Auxilliary scripts 16 ...
Documentation 17 ..
Related 17 ...

3

Overview
The python API can be used:

directly in the system console, using a general python interpret
in the Pixet program integrated python console

The base is pypixet object. It has methods for initialize and deinitialize, can create the pixet object.
The pixet object have device list, can create device objects and allows access to global properties.
A device objects have methods for acquisions and allows access to device parameters.
The pypxproc object is intended for use to processing of a data.
The pygui object allows you to create your own graphical interface. It can be used only if a script is run from the Pixet
program.

Introductory examples

Small code example for using in the system console or other third-party environment, with the Python 3.7.9 (With all
auxilliary files in the directory with the script):

import pypixet

print("pixet core init...")
pypixet.start()
pixet=pypixet.pixet
devices = pixet.devicesByType(pixet.PX_DEVTYPE_TPX3)
dev = devices[0]
dev.setOperationMode(pixet.PX_TPX3_OPM_EVENT_ITOT)

print("dev.doSimpleAcquisition (3 frames @ 1 sec) - start")
rc = dev.doSimpleAcquisition(3, 1, pixet.PX_FTYPE_AUTODETECT, "example.png")
print("dev.doSimpleAcquisition - end:", rc, "(0 is OK)")

#pixet.exitPixet() # using only for old pxcore versions up-to 1.8.3 - save settings,
correct stop devices and core exit - use both lines
pypixet.exit() # some USB devices must be power cycled if it not used / important if
third-party debug environment used

Small code example for using in the system console or other third-party environment, with the Python 3.7.9 (With all
auxilliary files in other directory, the Pixet directory for example):

PIXETDIR="C:\\Program Files\\PIXet Pro"
import os
os.chdir(PIXETDIR)

4

Note: Alternative is using sys.path.append(PIXETDIR)
import pypixet

print("pixet core init...")
pypixet.start()
pixet=pypixet.pixet
devices = pixet.devicesByType(pixet.PX_DEVTYPE_TPX3)
dev = devices[0]
dev.setOperationMode(pixet.PX_TPX3_OPM_EVENT_ITOT)

print("dev.doSimpleAcquisition (3 frames @ 1 sec) - start")
rc = dev.doSimpleAcquisition(3, 1, pixet.PX_FTYPE_AUTODETECT, "c:\\test-
files\\example.png")
print("dev.doSimpleAcquisition - end:", rc, "(0 is OK)")

#pixet.exitPixet() # using only for old pxcore versions up-to 1.8.3 - save settings,
correct stop devices and core exit - use both lines
pypixet.exit() # some USB devices must be power cycled if it not used / important if
third-party debug environment used

Note: os.chdir cannot work with devices requiring extra files like as firmwares or helper libraries. Add path instead it.

Small code example for using in the Pixet python console with integrated Python:

do not create the pypixet and pixet, they exist by default

devices = pixet.devicesByType(pixet.PX_DEVTYPE_TPX3)
dev = devices[0]
dev.setOperationMode(pixet.PX_TPX3_OPM_EVENT_ITOT)

print("dev.doSimpleAcquisition (3 frames @ 1 sec) - start")
rc = dev.doSimpleAcquisition(3, 1, pixet.PX_FTYPE_AUTODETECT, "example.png")
print("dev.doSimpleAcquisition - end: %i (0 is OK)" % rc)

do not execute the pixet.exitPixet(), it will cause whole the Pixet program to exit

Small code example for using in or outside the Pixet python console

pixetPresent = False

try:
 devices = pixet.devices()
 pixetPresent = True

5

 print("Pixet core: present")
except:
 print("Pixet core: starting...")
 import pypixet
 pypixet.start()
 pixet=pypixet.pixet
 devices = pixet.devices()
 print("Done")

dev = devices[0]
print(f"dev.doSimpleAcquisition(test.png)...")
rc = dev.doSimpleAcquisition(1, 1, pixet.PX_FTYPE_AUTODETECT, "test.png")
print(f"dev.doSimpleAcquisition - end: {rc} (0 is OK)")
if rc!=0: print(dev.lastError())

if pixetPresent:
 print("Pixet core: remain")
else:
 print("Pixet core: exit...")
 #pixet.exitPixet() # up to API 1.8.3
 pypixet.exit()
 print("Done")

See more examples: #Examples

Requirements
The Pixet Python API can be used from the Python interpreter integrated in the Pixet program or from command line with
external Python without the Pixet.

For starting from the Pixet Python scripting plugin are not need any special files.

If you want to run scripts without the Pixet, need additional files:

API functions using of pypixet.pyd and pypxproc.pyd
Python versions 3.12

Or if old pxcore versions up-to 1.8.3 used, need Python 2.7 to 3.8 on Linux, or to 3.7 on Windows or 3.10 for ARM.

For Windows the Pixet core dlls: pxcore.dll, pxproc.dll, or linux .so equivalents.
For saving some advanced standard file types: Filetype plugin like as hdf5io.dll plugin, see: File types #HDF5, File types

https://wiki.advacam.cz/wiki/File_types#HDF5_files
https://wiki.advacam.cz/wiki/File_types#TIFF_images

6

#TIFF

The Pixet core needs the pixet.ini file with proper hwlibs list inside, necessary hardware dll files (eq minipix.dll),
subdirectory “configs” with config files for all present imaging chips (eq MiniPIX-I08-W0060.xml).

See: Files and directories of the Pixet and SDK

The Pixet API packages

Files in the Pixet API package for Windows

Files in Pixet API package for Linux

Download at advacam.com/downloads/
Note: Pay attention to download the correct environment version (OS, 32/64 bit,
x86/ARM)

pxcore.dll (or lib...so)
pxcore.lib

pxproc.dll (or lib...so)

Binary libraries
(pxcore.lib is only for
Windows static
linking)

pypixet.pyd (or .so)
pypxproc.pyd (or .so)

Python core and
processing libraries
See Python API

pxcapi.h
common.h

Header for the binary
compile with
pxcore.dll/so
See Binary core API

pixet.ini

Pixet core
configuration file
See: Files and
directories of the
Pixet and SDK -
pixet.ini file

main.cpp
SampleProject.vcxproj

SampleProject.sln

Sample Visual studio
project
(Windows package
only)

*.rbf *.bit Firmware files
install_driver_rules.sh

60-opalkelly.rules
60-pixet.rules

Linux drivers
installer and it's
helper files

okFrontPanel.dll
libokFrontPanel.so

Helper library of the
zem.dll/so hwlib

ftd2xx.dll
Helper library of the
minipix.dll (Windows
only)

other files .dll
(or .so - no lib...so)

Hwlib files (can be in
separate directory)
See: Files and
directories of the
Pixet and SDK -
hwlibs

lic.info

License file for the
Pixet core - not
importatnt in this
version, but may be
in future

pdf files Binary and python
APIs manuals

Pixet core on Windows need more Microsoft Visual Studio .NET standard dlls (vccorlib140.dll etc).

https://wiki.advacam.cz/wiki/File_types#TIFF_images
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK
https://advacam.com/downloads/
https://wiki.advacam.cz/wiki/Binary_core_API
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#pixet.ini_file
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#pixet.ini_file
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#pixet.ini_file
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#pixet.ini_file
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#hwlibs
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#hwlibs
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#hwlibs
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#hwlibs

7

Project and auxilliary files examples

Files need for Python API program running without Pixet on a computer with
MS Visual Studio installed
(This is afther 2025.09 / for old see: old version)

This is the directory and the pixet.ini file
of the minimalistic python project. Using
only with the Minipix device and can be
run on a computer with properly
installed MS Visual Studio or it's
auxiliary files installed by another way.
The "factory" directory contains the
factory config file with proper name.

After the probram was started,
pypixet.start() and pixet=pypixet.pixet, ...
do something usesfull, ...
pixet.exitPixet() and pypixet.exit() used,
new directories, as visible on the right,
will remain after the program.

If the MS VS auxiliary files are not accessible from the project directory, you can copy it from the Pixet program directory. In
this image you can see all the auxiliary files marked, including MS VS dlls, firmware files for all our devices, hwlibs
directories, ... Copying it to a python project should always make it ready to work, but not all are always needed.

Files need for PY-API, located in the Pixet directory - with
VS installed on computer
(This is afther 2025.09 / for old see: old version)

Files need for PY-API, locateI in the Pixet directory -
without VS installed
(This is afther 2025.09 / for old see: old version)

Note: Working with some file types, such as HDF5 or TIFF, also requires the corresponding plugin from the plugins
directory, listed in the [plugins] section of the pixet.ini file.

Auxilliary files details

see:

Small: Pixet SDK: Auxilliary files
Details: Main directory of the API-using programs, independent on the Pixet
Configs considerations (C): Binary core API #Device configuration

https://wiki.advacam.cz/wiki/File:Files-need-for-PY-API-with-VS-minimal.png
https://wiki.advacam.cz/wiki/File:Files-need-for-PY-API-in-Pixet-with-VS.png
https://wiki.advacam.cz/wiki/File:Files-need-for-PY-API-in-Pixet-without-VS.png
https://wiki.advacam.cz/wiki/Pixet_SDK#Auxilliary_files
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#Main_directory_of_the_API-using_programs,_independent_on_the_Pixet
https://wiki.advacam.cz/wiki/Binary_core_API#Device_configuration

8

Basic troubleshooting
If normal error occured, like as function returns negative return code:

Use the device.lastError() to get error message and print or log it.

rc = dev.doSimpleAcquisition(5, 0.1, pixet.PX_FTYPE_AUTODETECT, "")
if rc!=0: print("doSimpleAcquisition", rc, dev.lastEroor())

Errors like as Object has no attribute 'setOperationMode' / 'doSimpleAcquisition' and other basic methods

Very likely that your version of Python is not compatible.
See: Typical complications

If not see anything, no devices detected, etc

See the Logs directory

If You want contact technical support

Send us Your program, contents of the "logs" directory, the return code, error message and what do You want to do with
the detector device.

If a problem like as "DLL load failed" occured and you want contact technical support

Use the dir command and send us Your program, the error message, version of Python that is installed on the computer
and the dir output.
Tip: Use DIR with subdirs, redirected to file and python version redirected to file, than send us the files:

dir /s > dir.txt
python -c "import sys; print(sys.version_info)" > pyVersion.txt

Note: If the program changing dirrectory, use cd "path" in the commandline. Copy the path from the program, type cd ",
paste the copied path, type the second " and press enter (really copy the path by copy-paste, don't manual copy it). Then
save the DIR again in the next file in the above way.

Typical complications

Python version
The API supports relatively old Pythons, moreover different ones depending on the platform. See #Requirements
Error message examples:

https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#logs

9

Object has no attribute'doSimpleAcquisition'
ImportError: DLL load failed while importing pypixet: The specified module was not found.

(Italic part is usually in the system language)

pypixet.pyd is not accessible
The python library is not in the directory that python currently sees.
May be related to pypixet.pyd, pypxproc.pyd, pypixetgui.pyd.
Error message example:

ModuleNotFoundError: No module named 'pypixet'

pxcore.dll is not accessible
The DLL library is not in the directory that python currently sees.
May be related to pxcore.dll, pxproc.dll
Error message example:

(No error message. The program ends after reach the import pypixet line.)

HW library not loaded
The import to Python was successful, but the program does not see any device, although it is connected and works in
Pixet, for example.
Check if the library for your device is listed in pixet.ini in the [hwlibs] section and if its file is located in the specified
location.
Check if all auxilliary files of your device is accessible.

Note: Some files, like as firmwares and helper libs, must be beside the program file or in added path, but not
accessible using change directory.

Error message example:

(No error message. The program simply not see the device.)

The program works the first time and then doesn't work until the IDE is restarted.
Many programming environments (like us Spyder) allow variables and objects to be preserved after the program exits. If
you do not exit your program with both pixet.exitPixet() and pypixet.exit() steps, there may be a problem with its restart.

The Pixet program normally working with the device, but my program cannot find device
If the Pixet found the device, but API running outside Pixet cannot find the device

10

pxcore in API was not load HW library, because it is not properly listed in it's pixet.ini1.
The HW library cannot access some auxilliary file, like as firmware image actual directory2.
The pxcore or HWlib has no some system/framework DLL files3.
You can copy Your program in the Pixet diractory and try to run it. If OK, find files You need or simple copy pixet.ini, all4.
libs and the hwlibs directory.

See: Files and directories of the Pixet and SDK

API version changes

Pxcore version 1.8.4 -> 1.8.5

We changed supported python version from 3.7.x to 3.12.x
Events changes:

Register: regID = dev.registerEvent(eventName, eventCallback)
Unregister: rc = dev.unRegisterEvent(regID)
Callback parameter:

Old: Single value, frame cout for example
New: Object with .data (some valua as was), .obj (calling object, device for example), .name (event name)

Exit pixet core changes: Use only pypixet.exit()

First steps
See the Overview section for difference between run Py scripts from the Pixet embeded Python and run from a system
console or third patrty IDE. This chapter contains a system console examples.

Mini test

Here we see the minimum necessary steps for the program to perform a measurement.

import pypixet
pypixet.start()
pixet=pypixet.pixet
devices = pixet.devices()
dev = devices[0]
dev.doSimpleAcquisition(1, 0.25, pixet.PX_FTYPE_AUTODETECT, "testFile.png")

https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK

11

This program works, takes one measurement for 0.25 seconds and saves the result as an image testfile.png. However, it
does not contain any detection and treatment of errors, setting the operating mode, properly terminating idle time with
the device.
It is possible that the program will measure something, but it is also possible that the resulting file will not appear. Or it
is possible that the program will measure something once and it will be necessary to unplug and plug in the device
before the next measurement.

Enhanced test

The improved program will make it possible to see whether initialization, measurement or termination is running, whether
and what error occurred during measurement.

import pypixet
print("Pixet core starting...")
pypixet.start()
pixet=pypixet.pixet
devices = pixet.devices()
dev = devices[0]
print("doSimpleAcquisition...")
rc = dev.doSimpleAcquisition(1, 0.25, pixet.PX_FTYPE_AUTODETECT, "testFile.png")
print("doSimpleAcquisition rc:", rc, "(0 is OK)")
if rc!=0: print(" ", dev.lastError())
print("Exit pixet core...")
#pixet.exitPixet() # up to API 1.8.3
pypixet.exit()

Most API functions have a return code. 0 means the operation was successful, negative values are error codes.
If an error is detected, the last error message can be found using the .lastError() method.
The functions pixet.exitPixet() and pypixet.exit() ensure that the work with the device is properly terminated.

We know what we are measuring

In this example, the operating mode is set before the measurement.

import pypixet
print("Pixet core starting...")
pypixet.start()
pixet=pypixet.pixet
devices = pixet.devices()
dev = devices[0]

rc = dev.setOperationMode(pixet.PX_TPX3_OPM_TOATOT)
print("setOperationMode rc:", rc, "(0 is OK)")
if rc!=0: print(" ", dev.lastError())

12

print("doSimpleAcquisition...")
rc = dev.doSimpleAcquisition(1, 0.25, pixet.PX_FTYPE_AUTODETECT, "testFile.png")
print("doSimpleAcquisition rc:", rc, "(0 is OK)")
if rc!=0: print(" ", dev.lastError())

print("Exit pixet core...")
#pixet.exitPixet() # up to API 1.8.3
pypixet.exit()

Using setOperationMode, we set the operation mode to the desired value.
If the command is not used, the device will measure according to what is stored in the configuration file since the last
time.
Note: Some devices hasn't the setOperationMode method. Use the pixel matrix configuration instead it (the Timepix chip,
used in the Minipix-EDU device)

Is the device connected?

It is usually necessary to know whether the desired device is connected.

import pypixet
print("Pixet core starting...")
pypixet.start()
pixet=pypixet.pixet
#devices = pixet.devices()
devices = pixet.devicesTpx3() # detecting Timepix3 devices only.

devCnt = pixet.deviceCount()
if devCnt<1:
 print("No tpx3 devices detected")
 print("Exit pixet core...")
 pixet.exitPixet()
 pypixet.exit()
 exit()

dev = devices[0]

rc = dev.setOperationMode(pixet.PX_TPX3_OPM_TOATOT)
print("setOperationMode rc:", rc, "(0 is OK)")
if rc!=0: print(" ", dev.lastError())

print("doSimpleAcquisition...")
rc = dev.doSimpleAcquisition(1, 0.25, pixet.PX_FTYPE_AUTODETECT, "testFile.png")
print("doSimpleAcquisition rc:", rc, "(0 is OK)")
if rc!=0: print(" ", dev.lastError())

13

print("Exit pixet core...")
#pixet.exitPixet() # up to API 1.8.3
pypixet.exit()

There are several ways to get access to the device:

pixet.devices() This will create a list of devices of all types. If no physical device is detected, the virtual device named1.
"FileDevice 0" is in this list.
devicesByType(type) List of devices of the type selected by the parameter.2.
devicesMpx2(), devicesMpx3(), devicesTpx3() List of devices of one type according to the function used.3.

First way can detect all device types, but with default pixet.ini settings count of devs is never 0. To detect the "no device"
state, test the condition devices[0].fullName()=="FileDevice 0".

devices = pixet.devices()
if devices[0].fullName()=="FileDevice 0":
 print("No devices connected")
 #pixet.exitPixet() # up to API 1.8.3
 pypixet.exit()
 exit()
dev0 = devices[0] # first of connected devices

If an specialized dev list used, detect the "no device" state, by test the condition len(devices)==0.

devices = pixet.devicesTpx3()
if len(devices)==0:
 print("No Tpx3 devices connected")
 #pixet.exitPixet() # up to API 1.8.3
 pypixet.exit()
 exit()
dev0 = devices[0] # first of connected Tpx3 devices

List of the devices

Here, the display of the list of devices and their basic properties is added.

import pypixet
print("Pixet core starting...")
pypixet.start()
pixet=pypixet.pixet

devices = pixet.devicesTpx3() # detecting Timepix3 devices only.

14

devCnt = pixet.deviceCount()

if devCnt<1:
 print("No tpx3 devices detected")
 #pixet.exitPixet() # up to API 1.8.3
 pypixet.exit()
 exit()

for n in range(devCnt):
 dev = devices[n]
 print(" ", n, dev.fullName(), dev.width(), dev.height(), dev.chipCount(),
dev.chipIDs(), dev.sensorType(0))

do something useful here

print("Exit pixet core...")
#pixet.exitPixet() # up to API 1.8.3
pypixet.exit()

Examples

Single examples

General (commandline)
For clarification on various auxiliary directories, configurations and calibrations:

https://advacam.com/examples/dirs+configs+calibs.py

All callbacks possible of Minipix-Tpx3 used:

https://advacam.com/examples/device-tpx3-frames-manyCallbacks.py

Reading a HDF5 (.H5) files:

https://advacam.com/examples/hdf5read.py

Library used in some frames-using examples:

https://advacam.com/examples/testFrames.py

https://advacam.com/examples/dirs+configs+calibs.py
https://advacam.com/examples/device-tpx3-frames-manyCallbacks.py
https://advacam.com/examples/hdf5read.py
https://advacam.com/examples/testFrames.py

15

Tpx (commandline)
Tpx version of device-tpx3-frames-manyAcqs.py:

https://advacam.com/examples/device-tpx-frames-manyAcqs.py

Tpx (run from Python IDE in the Pixet)
Example for MiniPIX-EDU in Pixet basic, but relevant for other Tpx devs in the Pixet Pro

PIXet Basic: Operation modes and calibration

Tpx2 (commandline)
https://advacam.com/examples/device-tpx2-example.py
https://advacam.com/examples/device-tpx2-pixcfg.py

Tpx3 (commandline)
Acquisition frames on Tpx3 and subframes access:

Tpx3 Frames with subframes examle
(usually produces data in two subframes, and the data in the base frame are artifacts of raw frame processing)

Data-driven measuring and using callbacks:

https://advacam.com/examples/device-tpx3-dataDriven.py

Frame measuring by many ways with and without callbacks:

https://advacam.com/examples/device-tpx3-frames-manyAcqs.py
Requires: https://advacam.com/examples/testFrames.py

https://advacam.com/examples/device-tpx-frames-manyAcqs.py
https://wiki.advacam.cz/wiki/PIXet_Basic#Operation_modes_and_calibration
https://advacam.com/examples/device-tpx2-example.py
https://advacam.com/examples/device-tpx2-pixcfg.py
https://wiki.advacam.cz/wiki/Python_API:_Frames_with_subframes_examle
https://advacam.com/examples/device-tpx3-dataDriven.py
https://advacam.com/examples/device-tpx3-frames-manyAcqs.py
https://advacam.com/examples/testFrames.py

16

Mpx3 (commandline)
Mpx3 frames with subframes examle: https://advacam.com/examples/device-mpx3-frames-SFRs.py
Mpx3 synchronization in multidev example: https://advacam.com/examples/device-mpx3-frames-sync.py
Mpx3 integral measuring example: https://advacam.com/examples/device-mpx3-frames-integral.py

Pygui (run from Python IDE in the Pixet)
https://advacam.com/examples/pygui-GridLayout.py
https://advacam.com/examples/pygui-Plot.py
https://advacam.com/examples/pygui-Plot-caldata.py
https://advacam.com/examples/pygui-PropertyTreeView.py
https://advacam.com/examples/pygui-PropertyTreeView+MpxFramePanel.py
https://advacam.com/examples/pygui-MpxFrame-Tpx.py
https://advacam.com/examples/pygui-MpxFrame-Tpx3.py
https://advacam.com/examples/pygui-MpxFrame-Mpx3.py
https://advacam.com/examples/pygui-MpxFrame-Mpx3-multiDev.py

Examples packages

Pxproc (commandline)
Spectral imaging API examples: https://advacam.com/examples/API-Python-pxproc-spectraimg.rar
Clustering API examples: https://advacam.com/examples/API-Python-pxproc-clustering.rar

Auxilliary scripts

Single scripts
Single T3PA from Advapix-Quad to four "single-chip" files:

https://advacam.com/examples/multichip/t3pa-quad-to-4f.py

Converting T3PA to frrames TXT/PMF

https://advacam.com/examples/t3pa-to-frames.py
Can be used with or without measurement and measuring from system Python or Pixet Py console.

https://advacam.com/examples/device-mpx3-frames-SFRs.py
https://advacam.com/examples/device-mpx3-frames-sync.py
https://advacam.com/examples/device-mpx3-frames-integral.py
https://advacam.com/examples/pygui-GridLayout.py
https://advacam.com/examples/pygui-Plot.py
https://advacam.com/examples/pygui-Plot-caldata.py
https://advacam.com/examples/pygui-PropertyTreeView.py
https://advacam.com/examples/pygui-PropertyTreeView+MpxFramePanel.py
https://advacam.com/examples/pygui-MpxFrame-Tpx.py
https://advacam.com/examples/pygui-MpxFrame-Tpx3.py
https://advacam.com/examples/pygui-MpxFrame-Mpx3.py
https://advacam.com/examples/pygui-MpxFrame-Mpx3-multiDev.py
https://advacam.com/examples/API-Python-pxproc-spectraimg.rar
https://advacam.com/examples/API-Python-pxproc-clustering.rar
https://advacam.com/examples/multichip/t3pa-quad-to-4f.py
https://advacam.com/examples/t3pa-to-frames.py

17

Export ABCT calibration files from multichip devs:

https://advacam.com/examples/multichip/device-multichip-export-abct.py

Spectral imaging offline parallel process of multichip data:

https://advacam.com/examples/multichip/pypxproc-spectraimg-tpx3-gFfE-parallel-offline.py

Documentation
The documentation of the Python API is in a PDF file located in the API package.
Download at: https://advacam.com/downloads/

Related
Pixet SDK
Files and directories: Main directory of the API-using programs

https://advacam.com/examples/multichip/device-multichip-export-abct.py
https://advacam.com/examples/multichip/pypxproc-spectraimg-tpx3-gFfE-parallel-offline.py
https://advacam.com/downloads/
https://wiki.advacam.cz/wiki/Pixet_SDK
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#Main_directory_of_the_API-using_programs,_independent_on_the_Pixet

	Overview
	Introductory examples

	Requirements
	Project and auxilliary files examples
	Auxilliary files details

	Basic troubleshooting
	Typical complications
	API version changes

	First steps
	Mini test
	Enhanced test
	We know what we are measuring
	Is the device connected?
	List of the devices

	Examples
	Auxilliary scripts
	Documentation
	Related

