DVACA

Imaging the Unseer

File types

Online version: https://wiki.advacam.cz/wiki/File types

U Pergamenky 12

Prague 170 00
D V A E: A . Czech Republic

Tear-Tellale L =
mac sales@advacam.com

www.advacam.com

https://wiki.advacam.cz/wiki/File_types

Contents

File type and extensions CONSANTS ... 3
File saviNg flags SUMMAIY ...ttt et e e s b bt e e s ek b e e e e bbb e e e ahb e e e e ah b b e e e s abb e e e sttt e e annbe e e s anneas 4
File extensions and flags: TXT/PBF/PMF detailsccoooiiiiiiiiii s 5
TRE fIleS FOrMALSc.ovviiii i e e e e s oLt e e e s s e bbb e e e e e e s e bbb e e e e e s e abb e e e e e e s annnrreees 5
Multi-files NAMeES gENEIAtiONocouiiiii i 5
Files WIth flAgS=0ccoouiiiiiiii ettt ettt ekt e ek et e ekttt e e eh b bt e e ek b et e e s s kbt e e sabbe e e e nbb e e e s abbeeeennes 6
FIags infIUENCE 0 FIl@Scooiiiieiiii et e e e s e e e e e e s e bbb e e e e e s s s bbb e e e e e e s anerrees 6
Timepix3 sPecific data fil@S ... et 8
T3PA fIleS dEtaAIlSccooooiiiie et 9
T3P fileS dETAIISc.oovviiiiiii e e 10
TR FIl@S ... et 11
Advapix Specific data fil@s ... e 11
BMF dET@AIlSooiieieeee ettt E e e e e e 11
AMEF dEtailsoooooiiiii et e aan 12
DSC/INFO metadata filles ... e 14
DSC fIleS dETQAIlScccuviiii it 14
INFO FileS d@EAIIScooeeieiie ettt e n et e et e e 18
IDX fIl@S @tAIIS ... ettt 19
HDFS @S ...ttt e e h bt oo R et e bt e e e R e e e R et e eE R e e eR Rt e eE e e eR R e e e AR e e e R e e R e e e R e e e R e e nRr e nrr e e nnn s 20
SAVING @ HDF5 fIl@Scooiiiiie ettt ekt e e e bbbt e e et e e e s sh bt e e e nbe e e e s be e e et 20
Pixet Structures in HDF5ocooi it rr e 22
o o T -1 Lo I od B0 T i | LY OO RROPPPPP 22
CLOG and CLOG.IDX files detailSc.cccoiiimiiiiiiiii it 23
PLOG fileS dETaAIlScuuveiiiiiiiiii e e e e s s e e e e s s e e e e e s e a e e e s s r e e e e s e 24
Pixel matrix configuration fil@S ... 24
L0 1 =T gl i 1 =SOSR SUPR 24

=Y = =Y PR 24

File type and extensions constants

These constants are file types and extensions. It can be used with APIs for filenames testing or with acquisition
functions.

Python example:

measure and save one 0.25 second frame to png file named "testFile.png"
dev.doSimpleAcquisition(1l, 0.25, pixet.PX FTYPE PNG, "testFile")
dev.doSimpleAcquisition(1l, 0.25, pixet.PX FTYPE AUTODETECT, "testFile.png")

File types and extensions constants table

File type constants File extensions constants Ext value
PX FTYPE NONE (No direct file saving - data stored only in memory)
PX FTYPE AUTODETECT (FTYPE detected by extension in a filename)
PX FTYPE ASCII FRAME PX EXT ASCII FRAME "txt"
PX FTYPE BINARY FRAME PX EXT BINARY FRAME "pbf"
PX FTYPE MULTI FRAME PX EXT MULTI FRAME "pmf"
PX FTYPE BINARY MULTIFRAME PX EXT BINARY MULTI FRAME "bmf"
PX FTYPE TPX3 PIXELS PX EXT TPX3 PIXELS "t3p"
PX FTYPE TPX3 PIXELS ASCII PX EXT TPX3 PIXELS ASCII "t3pa"
PX FTYPE CLUSTER LOG PX EXT CLUSTER LOG "clog"
PX FTYPE PIXEL LOG PX EXT PIXEL LOG "plog"
PX FTYPE PNG PX EXT PNG "png"
PX FTYPE TPX3 RAW DATA PX EXT TPX3 RAW DATA "t3r"
PX FTYPE PIXET RAW DATA PX EXT PIXET RAW DATA "prd"
PX FTYPE EXTERNAL (reserved)
(description file saved automatically with pmf/txt) PX EXT FRAME DESC "dsc"
(index file saved automatically with pmf/txt) PX EXT INDEX "idx"
Files extensions summary
txt ASCII matrix: Text files with img lines converted to text lines with numbers separated by spaces.
pbf Pixet binary frame. Simple binary files, numbers only.
pmf fIl’ixet multi frame. Default is same as the txt, but multiple frames on top of each other. Can use BINARY
ag.
t3pa Tpx3 pixels ASCII. Text format, tab-separated columns with the header in the first row. Biggest to saving.
t3p Tpx3 pixels. Binary format. Lower saved size, more complex to understand.
3r Tpx3 raw data. Fastest to saving, difficult to understand, slow to processing and can cause processing
errors.

Binary settings file. Measured or processed data with all configuration.
bstg See Binary Spectral Imaging API: BSTG files or see the "Spectraimg and data files" chapter in the Python

API manual.
clog, Clusters/pixels logs. Text files contains clusters separated to frames with pixels lists. Historic formats for
plog saving a data with few hited pixels in a frames.
h5 HDF5, hierarchical data format 5. Used as one of multi-frame formats.
dsc Text metadata list saved beside a standard multiframe files (PMF for example).
info Text metadata list saved beside other than standard multiframe files (T3PA for example).
idx Binary index for multi-frame files. Two formats existing.

Usesfull for fast access to n-th frame of large text files, necessary for frame seeking in binary sparse files.

https://wiki.advacam.cz/wiki/Binary_Spectral_Imaging_API#BSTG_files:_pxpSiSaveToFile_and_pxpSiLoadFromFile

File saving flags summary

File saving flags can do additional settings for file(s) saving.

¢ Can be used in saving files or in doAdvancedAcquisition python methods, for example.

¢ Flags can be combined.

¢ Default frame file settings is set of separate subframes text files, with all pixels include zeros, each subframe with
idx+dsc files:

file ToT.pmf, file ToT.pmf.dsc, file ToT.pmf.idx, file ToA.pmf, file ToA.pmf.dsc, file ToA.pmf.idx

File saving flags

Flag constant base name Description
PX FRAMESAVE BINARY Use binary format in pmf.
PX FRAMESAVE SPARSEX Index + non-zero pixels in file. # separates (sub)frs.
PX FRAMESAVE SPARSEXY X, Y + non-zero pixel in file. # separates (sub)frames.
PX FRAMESAVE NODSC Do not add dsc file.
PX FRAMESAVE NOSUBFRAMES Do not use subframes, save main frame only.
PX FRAMESAVE SUBFRAMES ONEFILE Save all subframes to a single file.

PX FRAMESAVE SUBFRAMES SAVEMAINFRAME Save separate all subframes and main frame extra.

The file saving flags can be used in

¢ Python API: Use pixet.PX FRAMESAVE ... constants in flags parameter of some measuring/saving methods.
¢ Binary API: Use PX FRAMESAVE ... constants in flags parameter of some measuring functions.
¢ The Pixet program. Available in the More measurement settings, after filename was selected

B Measurement Settings x

General File Output

Repetition Settings

Output: Suffix to file name (r_index) -~
Digits: 0 {auto-detection) £
Mext Serie: Start from 0 (overwrite) £

File Type Specific Settings

|_J Sparse file

[_] Binary file

[_J Mo description file

[_J Subframes in single file

Cancel

File saving flags in More measurement settings in Pixet

File extensions and flags: TXT/PBF/PMF details

The files formats

txt Text Single frame in the text file.

pbf Pixet Binary Frame Single frame in the binary file.

pmf Pixet Multi Frame Multiframe file with text or binary format, depends on flags used with saving.

idx Index Binary array of structs with 64b pointers to start of frames, frame metadata and
subframes.

List of all metadata for each frame and subframe. Actual device and acquisition
parameters, data types, etc. The "Frame name" item can be helpful to orientation in pmf
structure if the ONEFILE flag used. The Type=item is helpful to understanding the
structure of data if the BINARY flag used.

dsc Description

Multi-files names generation

Note
All the next examples are for Timepix3, single chip, opm = TPX3 OPM _TOATOT

flags 0 (default), input filename = "name", acqCount = 1
name ToA.txt, name ToA.txt.dsc, name ToT.txt, name ToT.txt.dsc

acqgCount =6
name 0 ToA.txt, name 0 ToA.txt.dsc, name 0 ToT.txt, ...

name 5 ToA.txt, name 5 ToA.txt.dsc, ...

PMF note
With each pmf generating .pmf.idx binary file, other is same as TXT with acqCount = 1.

Files with flags=0

Note
All the next examples are for Timepix3, single chip, opm = TPX3 OPM TOATOT

TXT file data, default
0005000 ... 256 numbers (int for non-calibrated values or float if the calibration used) and enter

0872000 ... 256 numbers (int for non-calibrated values or float if the calibration used) and enter
(256 lines)

PMF file data, default
0.00000 78.65742 0.00000 ... 256 numbers (int for non-calibrated values or float if the calibration used) and enter

0.00000 0.00000 999785.5 ... 256 numbers (int for non-calibrated values or float if the calibration used) and enter
(256 lines * acqCount)

Flags influence to files

TXT file data: FRAMESAVE SPARSEX flag

_ToA.txt file _ToT.txt file
px index ToA px index ToT
0 227212.500000 0 20
17 310685.937500 17 13
255 265487.500000 255 11
1274 105728.125000 1274 9

- Lists of all hited pixels
- ToT: int for non-calibrated data or float if the calibration used

TXT file data: FRAMESAVE SPARSEXY flag

_ToA.txt file _ToT.txt file
X Y ToA X Y ToT
247 3 189851.562500 247 3 16
250 4 140042.187500 250 4 12
5 9 317195.312500 5 9 5

- Lists of all hited pixels
- ToT: int for non-calibrated data or float if the calibration used

PMF file data, pixet.PX FRAMESAVE_SPARSEX(Y) flag
Same as TXT, but containing single lines with only # to separate frames

X Y ToA Line description
232139 321620.312500 frame 1, px 1
4 252 340231.250000 frame 1, px 2
frames separator
39 0 258270.312500 frame 2, px 1
2010 76593.750000 frame 2, px 2
92 1 268642.187500 frame 2, px 3

PX FRAMESAVE SUBFRAMES ONEFILE
All the data is in one file, subframes are placed one behind the other. If the measurement result has 10 frames with
2 subframes A/B, each n TXT file contains 2 subrfames and the PMF contains 20 frames in order:
sfrOA, sfrOB, sfr1A, sfrlB, ...
The exact order and names of type of (sub)frames is listed in the DSC file. The DSC have separate records [Fn] for
all the items.

PX FRAMESAVE SUBFRAMES SAVEMAINFRAME
The group of the saved files contains the main frame and all subframes. Subframe files end in sfrName, the main
frame does not. In DSC file accompanying the TXT with main frame is not the "Frame name" item.
Not applicable if combined with the ONEFILE flag.

PX FRAMESAVE BINARY
If the file type supports text and binary format, ex. PMF, save the binary.
Not applicable to TXT, must use PBF instead.
Data in the file are the simple array of non-calibrated 16 or 32b integers or calibrated doubles. See the DSC file for
used data type.

ele

ana
BINARY + SPARSEXY examples:

eeel

8203 8405

86e7 vses

8AGB

@CeD eEer
X 32b

(2980

0000|0100

0000|6000

Baae

1EA9 1541] v 33p

1Dee

Strir]

888l

beee v2ee

(eteirir iy riplric]

8283 84a5

0eee beee

CuCACACA CAhCACALR

8687 8389

be4e

[etel=dr]

BABEB

ADCe

QAGBEE

1541 data double

12A1

eCaD eEer

X 32b

000 (2000 0DPB| 0100
910 0PPe PAGP FCOP COPE 0202 POPP OCEP EFP@ data 16b

AP0 ARARA AIRA ARRR RLRR FTAR QARG RINA ARRA
Example of data saved if flags BINARY+SPARSEXY used

0000| 3AP0|[1De@ 8088 820@ Y 12b

Timepix3 specific data files

The Timepix3 have the data-driven mode feature. It is "frameless" mode, where the device can continuously send the
data of the pixels just hit indefinitely. Each sent pixel contains information:

1. Pixel position index

2. Event registration time (raw ToA count and FToA, conversion and corrections needed)

3. Energy deposited in a pixel (raw ToT count, need conversion using the chip-specific calibration table containing cal.
constants for each pixel)

Note: Theese files can be very large. You can collecting a data from cosmic particles using Minipix continuously for
more weeks and get a T3PA sized in tens of megabytes. But if some noising pixel occurs, a files can has many
gygabytes per day. If the Advapix used with x-ray mashines or accelerators, the output data can has gigabytes in an
instant.

The formats:

o T3PA files are text/csv files with basic data. User can simply see it in text editor and process it in Python etc.
o T3P files are binary files with basic data same as T3PA. Faster saving, shorter files.
¢ T3R files are binary files with complete raw communication data. For special purposes only.

Data order

¢ The order of the data roughly corresponds to the order of events, so data an hour later will definitely be further in
the file.

¢ But the exact order corresponds to the order in which the data came from the device, so for example a later event
that occurred at the edge where the chip is read can be recorded earlier than an earlier event that occurred further
from the edge.

e The unevenness of the order occurs from tens of ns on a lightly loaded Advapix to several ms with a heavy load on
the Minipix.

How to get the files:
¢ In the Pixet program set operation mode to ToA+ToT and use the "Pixels" measurement type and turn on file

saving.
¢ In the binary API using programs set operation mode to PXC TPX3 OPM TOATOT and use the

https://wiki.advacam.cz/wiki/PIXet
https://wiki.advacam.cz/wiki/Binary_core_API

pxcMeasureTpx3DataDrivenMode function.
¢ In the Python API using programs set operation mode to pixet.PX TPX3 OPM TOATOT and use the
dev.doAdvancedAcqquisition with acqType=pixet.PX ACQTYPE DATADRIVEN.

T3PA files details

The Timepix3 pixels ASCII file is timepix3 data file in text format with lines and tabs. Can be read as CSV, but its
size is not limited to sizes readable by Office-like programs . Contains the header line and data lines with record
index, pixel index in the matrix, Time of arrival, Time over threshold, Fine ToA and Overflow.

The T3PA example:

Index Matrix Index ToA ToT FToA Overflow
0 1028 1918 14 22 0

1 1028 3126 8 28 0

2 1028 3778 5 23 0

156003 39793 98473646054 38 9 0

156004 190 98492090610 19 3 0

¢ The Index is simple index of measurement line. This growing while measurement is running. If you append new
measurement to existing file, new index is 0 again and again growing while new measurement is running.

2

Physical position of the x=0, y=0 pixel on the Minipix (1,1 in Pixet view)

e The Matrix Index is index of the pixel. On the Minipix Tpx3 is 0 at the left-down (see image)
¢ The ToA is time of arrival in units 25 ns, mod by limit specific by device type.
For example Minipix 2* (14600y), Advapix-single 2* (26s), Advapix-Quad 2* (6.5s).
Note: The ToA on-chip implementation in the pixels is limited to 14 bits (409.6 us).

The ToA in T3PA is extended by device. But there is inherent uncertainty around the borders. These values may
be incorrectly assigned. Users not comfortable with our extension can apply AND with (uint64)16383 to extended
ToA to get original ToA from the chip.

https://wiki.advacam.cz/wiki/Binary_core_API#pxcMeasureTpx3DataDrivenMode
https://wiki.advacam.cz/wiki/Python_API

e The ToT is time over threshold in units 25 ns.
¢ The FToA stands for "fine ToA" and it is the finest step of the ToA measurement. To properly account for this step in
the conversion of ToA to time, it is necessary to subtract the amount of counts of fToA in the following manner:

Time [ns] = 25*ToA - (25/16)*fToA

The original range of this fToA value in the chip is 4 bits, or 16 values. This is extended in the post-processing of the
data into 5 bits, or 32 values to include a correction for the delay of the clock propagation in the chip. The final
value exported into t3pa files has a range of 5 bits, or 32 values, but the previous equation still stands.

¢ The Overflow is sign of data transfer overflow. If the line has this 1:

index = 0x74: start of lost data

index = 0x75: end of lost data, toa is length of the missing time

(this can occurs with rates over megahits per seconds for Minipix)

Note: In data from multichip devices, there is not Overflow, replaced by Chip index (But column name is still
Overflow).

If saving of the T3PA repeated to the same file, new data will be append with new reset of record index and ToA
and the file containing parts is like this:

507812 353 39993345 1022 15 0
507813 46177 39999843 159 2 0
507814 45921 39999843 159 2 0

0 421 2 13 29 0

1 297 2 22 27 0

2 297 145 62 17 0

3 297 283 19 13 0

T3P files details

Timepix3 Binary Pixels is similar to t3pa file. Just the numbers are not saved as ASCII, but binary. The file contains
one pixel after each other. Each pixel in this format:

u32 matrixIdx;
u64 toa;

byte overflow;
byte ftoa;

ule tot;

T3P file contents example:

-10 -

As see in a HEX editor Redistributed according the structure
0000 0000 0005 0300 4B 8B 1B 1B 2B

6087 0000 1EOB 0000 5E 86 00 00 1TE 0B 00 0000000000 00 05 0300

0000 0000 0005 0400 6087 0000 1E 0B 00 00 00000000 00 05 0400

6387 0000 1FOB 0000 63870000 1IF0OB0O0 0000000000 00 1B 0100

0000 0000 001B 0100 64 86 00 00 1IE 0B 00 0000000000 00 15 0400

6486 0000 1EOB 0000 5D 84 0000 1F 0B 000000000000 00 10 0200

0000 0000 0015 0400 89 BD 000024 0B000000000000 00 15 0ODOO

5D84 0000 1F0B 0000

0000 0000 0010 0200 Corresponding start of T3PA

89BD 0000 240B 0000 Index Matrix Index ToA ToT FToA Overflow

0000 0000 0015 0DOO 0 34398 2846 3 5 0

5F80 0000 1EOB 0000 1 34656 2846 4 5 0

0000 0000 0002 0600 2 34659 2846 1 27 0
4

3 34404 2846 21 0
T3P files with trgTimeStamp

Note: This is old internal testing feature and was not intended for mormal using. If you do want to use it, here's some
info:

If the trgTimeStamp feature is enabled, file can contains lines of tab-divided ASCII numbers. Every record is six
numbers divided by tabs (0x09) and ended with line end (0x0A). It is possible that older firmware versions have a
different number and meaning of the numbers.

Every sync pulse cause creating of one line record. In the file, each sync record and each pixel are simply stored in
the order as it arrived on the computer. Any combination of order and number of binary and text records can be
expected.

This is a source of complications when using the file. The file must be browsed sequentially as binary pixels. At the

first occurrence of faulty or suspicious values (eg high pixel index, high ToA, Overflow>1) assume that the current
record is not a pixel, but that the ASCII/tab line starts here and that it ends at 0A.

T3R files

The Timepix3 Raw Data File is special format for testing purposes. This is a dump of raw communication from the
device. The file format is device specific, binary, complex and files are very large. Use this only if you have no other
option.

Advapix specific data files

BMF details

This special file contains a binary matrix data from fast measurements (AdvaPIX-Tpx and ModuPIX devices).

Note
Obsolete format for obsolete devices

.11 -

To save theese files the Advapix-Timepix must be used, set the fast mode by setting acq. time 0.01 sec or shorter and
frames count divisible by 100.

The file starts with 13 bytes long header and then is followed by pixel values of each frame. Each frame has a few
dummy bytes at the beginning. So the layout of the file is:

[HEADER] [Frame 1][Frame 2][Frame 3]

where header is 13 bytes:

u32 width;

u32 height;

u32 offset;
char frameType;

¢ witdh and height is the dimensions of each frame.
e Each frame data is prepended by offset number of dummy bytes.
¢ The frameType specifies the type (variable type) of pixel values. It can be one of the following:

CHAR = 0 (1 byte size)
BYTE = 1 (1 byte size)
I16 = 2 (2 bytes size)
Ule = 3 (2 bytes size)
I32 = 4 (4 bytes size)
U32 = 5 (4 bytes size)
I64 = 6 (8 bytes size)
U4 = 7 (8 bytes size)
FLOAT = 8 (4 bytes size)

DOUBLE = 9 (8 bytes size)

AMF details

Notes
Special, rare format.
Don't save it unless you have a very special reason.

This file is an output from the AdvaPIX Quad device. AdvaPIX Quad is a device that is assembled from 4 AdvaPIX
devices. Each device is connected to computer via separate USB Link. The amf is a binary file that contains data from
all the devices combined into one stream of frame matrixes. The file consists of two parts a header (1000 bytes) and
the data.

There are two versions of the file. Version 1 and Version 2. Version 1 has only one offset parameter, but had a bug,
where frames were shifted in the file by 8 bytes. Version 2 has to frame data offsets - before frame data and after
frame data.

-12 -

Header (version 1):

struct header {

byte magic[3]; // AMF

byte ver; // 1

u32 channelCount;

u32 offset; // offset of each frame data in the frame block
u32 chipsWidth; // number of chips in x coordinate

u32 chipsHeight; // number of chips in y coordinate

byte chipLayout[256]; // order of chips

byte chipAngles[256]; // rotation of chips

Header (version 2):

struct header {

byte magic[3]; // AMF

byte ver; // 2

u32 channelCount;

u32 offsetBefore; // offset of the beginning of frame data in frame block
u32 offsetAfter; // offset after frame data

u32 chipsWidth; // number of chips in x coordinate

u32 chipsHeight; // number of chips in y coordinate

byte chipLayout[256]; // order of chips

byte chipAngles[256]; // rotation of chips

The file may contain variable number of chips (not only data from AdvaPIX Quad = 4 chips).

¢ channelCount - How many chip are present in the file.

¢ chipsWidth and chipsHeight - How many chips are in x and y coordinate. For example for AdvaPIX Quad it is 2 by
2 (chipsWith = 2, chipsHeight = 2).

¢ chipLayout and chipAngles - When the device is read the order of chips is different than shown on the screen
(depending on the layout of the internal chip interconnection). Therefore it is necessary to know AdvaPIX QUAD
Multi-Frame Format (*.amf) order of the chips and they rotation to create correct image. chipLayout specifies order
of the chip (the indexes starts from 0 to the index of last chip, from the top left to the right bottom). The chipAngles
specifies rotation of each chip (0 = no rotation, 1 = 90 deg, 2 = 180, 3 = 270, all clockwise).

After the header file the frame data folows. The frame data are saved in frames blocks. Each block contain frames
from each detector.

[FrameBlockl] [FrameBlock2] [FrameBlock3]...

Frame Block contains:

[FrameDatal] [FrameData2] [FrameData3] [FrameData4]....

Each frame contains:

-13-

[Offset][MatrixData(65536*2)] // Version 1 of the file
[0ffsetBefore] [MatrixData(65536*2)][0ffsetAfter] // Version 2 of the file

Each frame is prepended by an offset (specified in header, offsetBefore) and appended byt some dummy data of
length offsetAfter. The frame pixels are saved as 16 bit unsigned integer. Each chip has 256x256 pixels. Therefore -
65536 * 2 bytes.

Bug in Version 1 of the AMF File: The version 1.0 of the AMF file contains bug, where the first frame in the data is
missing first 8 bytes. To compensate in the code, when reading make the length of HEADER smaller by 8 bytes =>
992 bytes.

Version 2 has size of offset before and after frame data instead.

Version 1.0 Example:

#define HEADER SIZE 1000

frameSizeInBytes = 65536 * 2 + offset;

numberOfFramesInFile = (fileSizeInBytes - HEADER SIZE) / frameSizeInBytes / channelCount
firstFrameDataPosition = (HEADER SIZE - 8) + offset

secondFrameDataPosition = (HEADER SIZE - 8) + offset + frameSizeInBytes * 1

Version 2.0 Example:

#define HEADER SIZE 1000

frameSizeInBytes = 65536 * 2 + offsetBefore + offsetAfter;

numberOfFramesInFile = (fileSizeInBytes - HEADER SIZE) / frameSizeInBytes / channelCount
firstFrameDataPosition = HEADER SIZE + offsetBefore

secondFrameDataPosition = HEADER SIZE + offsetBefore + frameSizeInBytes * 1

DSC/INFO metadata files

The metadata text files are saved beside the data files and containing informations about device and settings used for
measuring the data. It can be usable while openning the data file in the Pixet program or in other working with the
data.

If the API is used to saving the data, programmer can use callback like us "before saving data callback" to add Your
specific metadata items or can remove items that will not need.

¢ DSC are files generated beside the frame data and cotaining information for each frame
¢ INFO are files generated beside pixel data and some special data formats

DSC files details

The first line is header line:

Some like as A123456789: B=binary / A=ASCII and number = count of frames in multiframe data file

-14 -

Next are frames in format:

1. [Fn] - Frame with idx n start: [FO], [F1], ...
2. Frame type - Data type, pixel format and frame size: Some like as "Type=il16 [X,C] width=256 height=256"

Pixels format options:
matrix - Whole matrix saved. Number of saved pixels are allways width*height.
Multiframe data file not contains frame separator.
[X,C] - Hit pixels only. Every saved pixel has matrix index and data value.

ASCII multiframe data file contains the frame separators.
The IDX file must be used to find frame begins in binary multiframe file.

[X,Y,C] - Hit pixels only. Every saved pixel has X,Y position and data value.

ASCII multiframe data file contains the frame separators.
The IDX file must be used to find frame begins in binary multiframe file.

3. Frame metadata - List of metadata items separated by blank lines:

Each metadata item is line triplet:

"Ttem name" ("Item description"): Example: "Acq time" ("Acquisition time [s]"):
DataType[valCount] Example: double[1]

Values list Example: 0.500000

(blank line)

=W e

4. (blank line) - end of frame (there are two blank lines, the last metadata item end and the frame end)

In txt.dsc and pbf.dsc, end of the frame is end of the file.
In the pmf.dsc, next frames or subframes metadata follows.

Some example (PBF 1 frame, with BINARY and SPARSEXY - test_49 ToA.pbf.dsc):

BOOOOOOOO1 B=binary / A=ASCII and number = count of
frames in multiframe file

[FO] Index of frame in the file = 0
Type=double [X,Y,C] width=256 height=256 Data type double, X,Y,C = only hit pixels

-15-

saved and has XY pos.

"Acq Serie Index" ("Acquisition serie index"): Some metadata item name and (description)
u32[1] Type of the item data [number of values]
49 The value

(more metadata items separated by blank lines ..)

"Frame name" ("Frame name"):
char[3]
ToA This is the ToA frame

(more metadata items separated by blank lines ..)
(end of the file)

Other example (PMF 10 frames, with BINARY+SPARSEX+ONEFILE - test.pmf.dsc):

BOO00000O10

[FO] Start of the first subframe
Type=double [X,C] width=256 height=256 Pixel index and double type pixel data
(ToA in ns)

"Acq Serie Index" ("Acquisition serie index"):

u32[1]

0

(more metadata items separated by blank lines ..)

"Frame name" ("Frame name"):

char[3]

ToA

(more metadata items separated by blank lines ..)

[F1] Start of the second subframe

Type=1i16 [X,C] width=256 height=256 Pixel index and 116 type pixel data (ToT
in ticks 40MHz)

"Acq Serie Index" ("Acquisition serie index"):

u32[1]

0

(and the ToT frame metadata, [F2] and ToA subframe, [F3] and ToT sfr, .. [Fn] and ToT sfr
of (n/2)th frame)

Complete one frame DSC example (PMF 1 frame, BINARY+SPARSEX - test_15_ToA.pbf.dsc):

BOOOOOO0O1
[FO]
Type=double [X,C] width=256 height=256

-16 -

"Acqg Serie Index" ("Acquisition serie index"):
u32[1]
15

"Acqg Serie Start time" ("Acquisition serie start time"):
double[1]
1639059034.903085

"Acqg time" ("Acquisition time [s]"):
double[1]
0.500000

"ChipboardID" ("Chipboard ID"):
char[9]
108-W0060

"DACs" ("DACs"):
ul6[19]
16 8 128 10 120 1301 501 5 16 8 16 8 40 128 128 128 256 128 128

"Frame name" ("Frame name"):
char[3]
ToA

"HV" ("High voltage [V]"):
double[1]
-500

"Interface" ("Readout interface"):
char[7]
MiniPIX

"Mpx type" ("Medipix type (1-MXR, 2-TPX, 3-MPX3, 4-TPX3, 5-TPX2)"):
i32[1]
4

"Pixet version" ("Pixet version"):
char[5]
1.7.8

"Start time" ("Acquisition start time"):
double[1]
1639059042.934810

"Start time (string)" ("Acquisition start time (string)"):
char[64]
Thu Dec 9 15:10:42.934809 2021

"Threshold" ("Threshold [keV]"):

-17 -

double[1]
5.026744

INFO files details

e The T3PA.INFO containing metadata in format very similar to one frame of DSC file.
¢ Some other INFO files can containing simpliest formated metadata

The T3PA.INFO example:

[FileInfo]

"Acq Serie Index" ("Acquisition serie index"):
u32[1]

0

"Acq Serie Start time" ("Acquisition serie start time"):
double[1]
1704809538.719000

"Acq time" ("Acquisition time [s]"):
double[1]
1.000000

"ChipboardID" ("Chipboard ID"):
char[9]
DO6-WO065

"DACs" ("DACs"):
ule[19]
16 8 128 10 120 1237 437 5 16 8 16 8 40 128 128 128 256 128 128

"HV" ("High voltage [V]"):
double[1]
-450

"Interface" ("Readout interface"):
char[7]
MiniPIX

"Mpx type" ("Medipix type (1-MXR, 2-TPX, 3-MPX3, 4-TPX3, 5-TPX2)"):
i32[1]
4

"Pixet version" ("Pixet version"):
char[5]
1.8.1

"Shutter open time" ("Shutter open timestamp"):

-18 -

double[1]
1704809538.867000

"Start time" ("Acquisition start time"):
double[1]
1704809538.867000

"Start time (string)" ("Acquisition start time (string)"):
char[64]
Tue Jan 9 15:12:18.867000 2024

"Threshold" ("Threshold [keV]"):
double[1]
5.015797

The BMF.INFO example:

[File Meta Datal

Acq Serie Index:0

Acq Serie Start time:1704813831.469

Acq time:0.001

ChipboardID:G03-W0259

DACs:10 100 255 127 127 0 153 6 130 100 80 85 128 128
HV: -450

Interface:AdvaPIX

Mpx type:2

Pixet version:1.8.1

Start time:1704813831.633

Start time (string):Tue Jan 9 16:23:51.633000 2024
Threshold:5.02649397407217

Timepix clock:50

IDX files details

The IDX files are generated with multiframe files to help with fast seeking frames in files. Each frame except first
has the basic structure in the IDX file:

struct IndexItem {
164 dscPos; // frame position in the DSC file

i64 dataPos; // frame position in the main data file

i64 sfPos; // subframe position if exist subframes file next to the main data file
(usually not and =0)

b

// Note: CLOG.IDX has no this structure, this in only i64 pointers to frames

The PMF.IDX files generated beside the PMFs. Contains the simple binary array of structs of 3 little-endian qwords

-19 -

with addresses associated to the start of each frame except first: DSC, frame and subframe.

.pmf.idx with BINARY+ONEFILE, ToA+ToT example

main data contains

* ToA subframes (double*0x10000 = len 0x80000)

* ToT subframes (i16*0x10000 = len 0x20000)

The IDX contains

1. Pointers to frames in DSC file at 0 (not in idx), 0x03B5, 0x075D, 0x0B08,
0x0BEQO, ... (points to an empty line before [Fx] line)

2. Pointers to frames in main data file at 0 (not in idx), 0x080000, 0x0A0000,
0x120000, 0x140000, 0x1C0000, ...

3. Pointers to frames in additional subframes file (not exist -> all=0)

HDF5 files

The HDF5 (.H5) files are general standard binary containers for structured
data. If used to save, contains both measured data and metadata.

* To access theese files, use third party tools like as:

* HDFview from HDF Group

* h5py python library from HDF Group

See: Python API: Examples for reading using Python

* HDF5 C++ API from HDF Group

* If saving from API without the Pixet program, the hdf5io.dll plugin must
be found and listed in the [plugins] section of the pixet.ini file.

See example right >>>

See Files and directories of the Pixet and SDK: pixet.ini

Saving a HDF5 files

¢ The files can be saved from the Pixet program or by API.

~Etesths

Type: Count: Time [s]: » 2 Frame_0
Frames w3 = 0.2 ») Frame_1
(L] Repeat @ File output ik ' 2 Frameg_?
e meas
10 > ‘out-files\test.hS:meas2
» C Frame_0
® start » 2 Frame_1
» 23 Frame_2

Saving HDF5 from the Pixet program:

oeee
eees
eele
0018
e02e
0023
ee3e
ee33
fAA4h

[Hwlibs]
hwlibs\minipix.dll
hwlibs\zem.dll

hwlibs\zest.dll

[Plugins]
plugins\hdf5io.dll

First was saved the test.h5, second the test.h5:meas2

e When saving to an existing file, the data is added to the existing structure in it.
e Use the AUTODETECT filetype in the API functions using filetype.
¢ Saving flags will be ignored.

8eel

B583
eoee
Boee

.pmf.idx file example

Pixet.ini example with the hdfbio plugin:
[Settings]

UseAppDataDir=false
FactoryDir=C:\Advacam\ factory

-20-

https://wiki.advacam.cz/wiki/Python_API#Examples
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#pixet.ini_file
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#pixet.ini_file

Next image showing 3 files in the HDFview program

. File test1.h5 saved by acquisition of 10 frames with no additional filename settings.

2. File test2.h5 saved by tripple acquisitions of 10 frames, with filename settings "test1.h5:set0", "test1.h5:set1" and
"testl.h5:set2".

3. File test1.h5, existing from first acq., saved again in next acquisition of 10 frames with no additional filename

settings.

~ [B] test1.h5 ~ [B] test2.h5 ~ [B] test1.h5
» 2 Frame_0 » 2 setD » 2 Frame_0
» 2 Frame_1 » 2 setl » 2 Frame_1
» 2 Frame_2 v @ set? » 23 Frame_10
») Frame 3 ») Frame 0 » 2 Frame_11
» 2 Frame_4 ~ @ Frame_1 » 2 Frame_12
» C Frame_5 B3 AcgTime » C Frame_13
» Ca Frame_6 3 Data » 2 Frame_14
» 2 Frame 7 5 Height » C Frame_15
» 23 Frame_8 » 2 MetaData » 2 Frame_16
v @ Frame 9 £ StarfTime » 2 Frame_17
B AcgTime ~ @ SubFrames » 2 Frame_18
3 Data » 2 ToA » 23 Frame_19
5 Height v @ ToT » 2 Frame_2
» 23 MetaData B3 AcgTime » 2 Frame_3
3 StartfTime £ Data » 2 Frame_4
~ @ SubFrames 5 Height » C Frame_5
~ @ ToA v @ MetaData » Ca Frame_6
B AcgTime 5 Acq Serie Index » 2 Frame 7
3 Data 5 Acq Serie Start time » 2 Frame_8
5 Height B3 Acq time » 23 Frame_9
» 23 MetaData ChipboardID
8 StartTime 8 DACs
B Width Frame name test1.hS after
v @ ToT B HV second acquisition
B AcgTime Interface
3 Data 5 Mpx type
5 Height Pixet version
» 23 MetaData 8 Start time
3 StartfTime Start time (string)
8 Width 8 Threshold
8 Width 8 StartTime
8 Width
8 Width
» 23 Frame_2
» 23 Frame_3

“ Fw Cramn A
HDFS5 files examples in HDFview: Single acq. with 10 frames, triple with structure, first file after second acq.

The files was saved from the PY script:

-21-

fName = out dir + "testl.h5"

print("doSimpleAcquisition", fName, "...")

rc = dev.doSimpleAcquisition(10, 0.1, pixet.PX FTYPE AUTODETECT, fName)
if rc==0: print("O0K")

else: print("error:", rc, dev.lastError())
fName = out dir + "testl.h5"
print("doSimpleAcquisition”, fName, "...")

rc = dev.doSimpleAcquisition(10, 0.1, pixet.PX FTYPE AUTODETECT, fName)
if rc==0: print("OK")
else: print("error:", rc, dev.lastError())

fName = out dir + "test2.h5:set0@"

print("doSimpleAcquisition”, fName, "...")

rc = dev.doSimpleAcquisition(10, 0.1, pixet.PX FTYPE AUTODETECT, fName)
if rc==0: print("OK")

else: print("error:", rc, dev.lastError())
fName = out dir + "test2.h5:setl"
print("doSimpleAcquisition", fName, "...")

rc = dev.doSimpleAcquisition(10, 0.1, pixet.PX FTYPE AUTODETECT, fName)
if rc==0: print("0K")

else: print("error:", rc, dev.lastError())
fName = out dir + "test2.h5:set2"
print("doSimpleAcquisition”, fName, "...")

rc = dev.doSimpleAcquisition(10, 0.1, pixet.PX FTYPE AUTODETECT, fName)
if rc==0: print("OK")
else: print("error:", rc, dev.lastError())

Pixet structures in HDF5

As see at the "HDF5 files examples" image in the previous chapter, the acquisition creates the file with structure (or
adds to existing):

Root name or path if defined by adding :hdfpath at end of filename (optional)

Frame list: Frame 0, Frame 1, ...

Main frame data: The Data item

Basic informations items: AcqTime, Width, Height, StartTime

MetaData directory containing same data as saved to the dsc files alongise classic simple data files.

SubFrames directory with subframes subdirs named by subframe names (ToA, ToT, Event, iToT, ...) containing same
structures as the main frame.

CLOG and PLOG files

Old text formats from age of the first Timepix chips.

SOl W=

¢ CLOG (clusters log) has remained popular in the context of cluster processing.
¢ PLOG (pixels log) is currently no longer used.

-22 -

CLOG and CLOG.IDX files details

The CLOG format was developed to facilitate further processing of cluster data by the user programs. This is a text
file divided to the frame records and the records can contain a clusters. Frames and clusters are separated by the line
breaks. Frames can be separated by whole free line.

The record format
Frame FN (frameStart, frameAcqTime s)
[%, y, energy, ToA] [x, y, energy, ToA] [x, y, energy, ToA] ...

FN Frame index number. First 0 or 1.

Start time of the frame. There are variants:

1. If it from measuring or from replay frame-based data with metadata available:

Linux format, frame starting time from PC’s getPrecisionTime.

2. If it from pixel-based data with metadata available (file.t3pa + file.t3pa.info):

Linux format, acq. starting time from PC’s getPrecisionTime with added time from data.
3. If it from replay data and metadata not available:

Nanoseconds from the input data.

Periodic increments if source is frame-based, random increments if source is data-driven.

frameAcqTime Duration of the frame, float in seconds. Always 0.000000 in data from data-driven sources.
X,y Position of the pixel.
energy* Energy deposited in the pixel. Integer ToT counter value if not calibrated, float in keV if calibrated.

Time of arrival, relative to frameStart. Integer in CLK ticks if ToA conversion is disabled, float in ns
if ToA conversion is enabled.

frameStart

ToA*

*ToA+energy records can be created from source that supports combined ToA+ToT modes, like as OPM_TOATOT on
the Timepix3. If the data source supports only single modes, only one value is in this position.

Clog from data-driven source not contains free frames.
Clog from frame-based source can contains free frames.

Example records (Timepix3, Frame2 with two clusters by 2 and 4 pixels, Frame3 with single 2-pixel cluster)

Frame 2 (273697060.937500, 0.000000 s)

[214, 195, 43.1598, 0] [220, 191, 20.6515, 7.8125]

[224, 182, 21.8018, 31.25] [223, 186, 4.58576, 31.25] [222, 183, 38.2381, 31.25] [226,
185, 14.7623, 34.375]

Frame 3 (371034565.625000, 0.000000 s)
[151, 33, 32.5745, 0] [151, 34, 13.8135, 17.1875]

Example records (Timepix)

Frame 6 (1639143482.765164, 0.200000 s)
[87, 134, 5.75352] [217, 58, 14.8396]

Frame 7 (1639143483.019154, 0.200000 s)
Frame 8 (1639143483.261158, 0.200000 s)

-23-

Frame 9 (1639143483.513150, 0.200000 s)

The CLOG.IDX files generated beside the CLOGs.
Contains the simple binary array of little-endian @00l 0203 0405 0007 0509 BAGE CeD ecer

qword addresses of the "F" at each record start. 000 000D CPPO PORE GROE 2900 PODP CRER BRRO

.clog.idx example

Pointers to records at 0, 0x29, 0x52, 0x7b, 0xA4, ~21@ 5200 000 6000 6008 7B00 0000 0000 0060

0xCD, ... 828 A480 P0B0 boEe Pede (Deo oo bBoe bBoe
F

Note: The CLOG.IDX is different from ordinary Ly FO00 0000 0000 0000 1401 0000 0000 0000

ones IDX files. Example .clog.idx file

PLOG files details

¢ Like as CLOG, but with simple lists of hit pixels of a frames.
e Metatdata section at start.
¢ Obsolete format usable only with Timepix (first generation) chips.

Recommended to use PMF with SPARSEX(Y) flag instead it.

Pixel matrix configuration files

Overview
bpc Binary Pixel Configuration All PM config in one file, meaning of the bits depends on the chip.
txt Ascii Mask Matrix Text file with pixel mask
txt Ascii Test Bit Matrix Text file with test bits

txt Ascii THL adj. bits Matrix Text file with threshold values adjustment

Other files

o See: Files and directories of the Pixet and SDK: pixet.ini

o See: Files and directories of the Pixet and SDK: Configuration XML files

o See: Files and directories of the Pixet and SDK: Device configuration ini files

¢ See: Files and directories of the Pixet and SDK: Device firmware files

¢ See: Binary Spectral Imaging API: BSTG files or see the Spectraimg and data files chapter in the Python API
manual

¢ User XML settings: See: The ISetting object chapter in the Python API manual

Related

e Files and directories of the Pixet and SDK
o Pixet SDK overview
e The PIXet program

-24-

https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#pixet.ini_file
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#pixet.ini_file
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#Configuration_XML_files
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#Configuration_XML_files
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#Device_configuration_ini_files
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#Device_configuration_ini_files
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#Device_firmware_files
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK#Device_firmware_files
https://wiki.advacam.cz/wiki/Binary_Spectral_Imaging_API#BSTG_files:_pxpSiSaveToFile_and_pxpSiLoadFromFile
https://wiki.advacam.cz/wiki/Binary_Spectral_Imaging_API#BSTG_files:_pxpSiSaveToFile_and_pxpSiLoadFromFile
https://wiki.advacam.cz/wiki/Files_and_directories_of_the_Pixet_and_SDK
https://wiki.advacam.cz/wiki/Pixet_SDK
https://wiki.advacam.cz/wiki/PIXet

	File type and extensions constants
	File saving flags summary
	File extensions and flags: TXT/PBF/PMF details
	The files formats
	Multi-files names generation
	Files with flags=0
	Flags influence to files

	Timepix3 specific data files
	T3PA files details
	T3P files details
	T3R files

	Advapix specific data files
	BMF details
	AMF details

	DSC/INFO metadata files
	DSC files details
	INFO files details

	IDX files details
	HDF5 files
	Saving a HDF5 files
	Pixet structures in HDF5

	CLOG and PLOG files
	CLOG and CLOG.IDX files details
	PLOG files details

	Pixel matrix configuration files
	Other files
	Related

